Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 43(6)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37334574

RESUMO

RecA ATPases are a family of proteins that catalyzes the exchange of complementary DNA regions via homologous recombination. They are conserved from bacteria to humans and are crucial for DNA damage repair and genetic diversity. In this work, Knadler et al. examine how ATP hydrolysis and divalent cations impact the recombinase activity of Saccharolobus solfataricus RadA protein (ssoRadA). They find that the ssoRadA-mediated strand exchange depends on ATPase activity. The presence of Manganese reduces ATPase activity and enhances strand exchange, while calcium inhibits ATPase activity by preventing ATP binding to the protein, yet destabilizes the nucleoprotein ssoRadA filaments, allowing strand exchange regardless of the ATPase activity. Although RecA ATPases are highly conserved, this research offers intriguing new evidence that each member of the family requires individual evaluation.


Assuntos
Proteínas de Ligação a DNA , Sulfolobus solfataricus , Humanos , Proteínas de Ligação a DNA/genética , Cátions Bivalentes/metabolismo , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Recombinação Homóloga , Trifosfato de Adenosina/metabolismo
2.
Biochem J ; 478(10): 2019-2034, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33974040

RESUMO

Plasma membrane Ca2+-ATPase (PMCA) transports Ca2+ by a reaction cycle including phosphorylated intermediates. Calmodulin binding to the C-terminal tail disrupts autoinhibitory interactions, activating the pump. To assess the conformational changes during the reaction cycle, we studied the structure of different PMCA states using a fluorescent probe, hydrophobic photolabeling, controlled proteolysis and Ca2+-ATPase activity. Our results show that calmodulin binds to E2P-like states, and during dephosphorylation, the hydrophobicity in the nucleotide-binding pocket decreases and the Ca2+ binding site becomes inaccessible to the extracellular medium. Autoinhibitory interactions are disrupted in E1Ca and in the E2P ground state whereas they are stabilized in the E2·Pi product state. Finally, we propose a model that describes the conformational changes during the Ca2+ transport of PMCA.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Sítios de Ligação , Calmodulina/genética , Humanos , Cinética , Fosforilação , Ligação Proteica , Conformação Proteica
3.
Heliyon ; 7(2): e06337, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33681501

RESUMO

Flavonoids are natural compounds responsible for the health benefits of green tea. Some of the flavonoids present in green tea are catechins, among which are: epigallocatechin, epicatechin-3-gallate, epicatechin, catechin and epigallocatechin-3-gallate (EGCG). The latter was found to induce apoptosis, reduce reactive oxygen species, in some conditions though in others it acts as an oxidizing agent, induce cell cycle arrest, and inhibit carcinogenesis. EGCG also was found to be involved in calcium (Ca2+) homeostasis in excitable and in non-excitable cells. In this study, we investigate the effect of catechins on plasma membrane Ca2+-ATPase (PMCA), which is one of the main mechanisms that extrude Ca2+ out of the cell. Our studies comprised experiments on the isolated PMCA and on cells overexpressing the pump. Among catechins that inhibited PMCA activity, the most potent inhibitor was EGCG. EGCG inhibited PMCA activity in a reversible way favoring E1P conformation. EGCG inhibition also occurred in the presence of calmodulin, the main pump activator. Finally, the effect of EGCG on PMCA activity was studied in human embryonic kidney cells (HEK293T) that transiently overexpress hPMCA4. Results show that EGCG inhibited PMCA activity in HEK293T cells, suggesting that the effects observed on isolated PMCA occur in living cells.

4.
Biochim Biophys Acta Proteins Proteom ; 1868(10): 140479, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599297

RESUMO

Cyclin-dependent kinase A (CDKA) is a key component for cell cycle progression. The catalytic kinase activity depends on the protein's ability to form an active complex with cyclins and on phosphoregulatory mechanisms. Cell cycle arrest and plant growth impairment under abiotic stress have been linked to different molecular processes triggered by increased levels of reactive oxygen and nitrogen species (ROS and RNS). Among these, posttranslational modifications (PTMs) of key proteins such as CDKA;1 may be of significance. Herein, isolated maize embryo axes were subjected to sodium nitroprusside (SNP) as an inductor of nitrosative conditions to evaluate if CDKA;1 protein was a target for RNS. A high degree of protein nitration was detected; this included the specific Tyr-nitration of CDKA;1. Tyr15 and Tyr19, located at the ATP-binding site, were the selective targets for nitration according to both in silico analysis using the predictive software GPS-YNO2, and in vitro mass spectrometry studies of recombinant nitrated ZmCDKA;1. Spectrofluorometric measurements demonstrated a reduction of ZmCDKA;1-NO2 affinity for ATP. From these results, we conclude that Tyr nitration in CDKA;1 could act as an active modulator of cell cycle progression during redox stress.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo , Zea mays/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cromatografia Líquida , Quinases Ciclina-Dependentes/química , Modelos Moleculares , Desenvolvimento Vegetal , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Tirosina/química , Zea mays/genética
5.
Biochim Biophys Acta Biomembr ; 1861(2): 366-379, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419189

RESUMO

The plasma membrane Ca2+­ATPase (PMCA) belongs to the family of P-type ATPases, which share the formation of an acid-stable phosphorylated intermediate as part of their reaction cycle. The crystal structure of PMCA is currently lacking. Its abundance is approximately 0.1% of the total protein in the membrane, hampering efforts to produce suitable crystals for X-ray structure analysis. In this work we characterized the effect of beryllium fluoride (BeFx), aluminium fluoride (AlFx) and magnesium fluoride (MgFx) on PMCA. These compounds are known inhibitors of P-type ATPases that stabilize E2P ground, E2·P phosphoryl transition and E2·Pi product states. Our results show that the phosphate analogues BeFx, AlFx and MgFx inhibit PMCA Ca2+­ATPase activity, phosphatase activity and phosphorylation with high apparent affinity. Ca2+­ATPase inhibition by AlFx and BeFx depended on Mg2+ concentration indicating that this ion stabilizes the complex between these inhibitors and the enzyme. Low pH increases AlFx and BeFx but not MgFx apparent affinity. Eosin fluorescent probe binds with high affinity to the nucleotide binding site of PMCA. The fluorescence of eosin decreases when fluoride complexes bind to PMCA indicating that the environment of the nucleotide binding site is less hydrophobic in E2P-like states. Finally, measuring the time course of E → E2P-like conformational change, we proposed a kinetic model for the binding of fluoride complexes and vanadate to PMCA. In summary, our results show that these fluoride complexes reveal different states of phosphorylated intermediates belonging to the mechanism of hydrolysis of ATP by the PMCA.


Assuntos
ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/enzimologia , Fluoretos/farmacologia , Vanadatos/farmacologia , Trifosfato de Adenosina/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Calmodulina/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Amarelo de Eosina-(YS)/metabolismo , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Cinética , Magnésio/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Conformação Proteica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Água
6.
Biochem Mol Biol Educ ; 46(5): 502-515, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30281891

RESUMO

Metabolic control analysis (MCA) is a promising approach in biochemistry aimed at understanding processes in a quantitative fashion. Here the contribution of enzymes and transporters to the control of a given pathway flux and metabolite concentrations is determined and expressed quantitatively by means of numerical coefficients. Metabolic flux can be influenced by a wide variety of modulators acting on one or more metabolic steps along the pathway. We describe a laboratory exercise to study metabolic regulation of human erythrocytes (RBCs). Within the framework of MCA, students use these cells to determine the sensitivity of the glycolytic flux to two inhibitors (iodoacetic acid: IA, and iodoacetamide: IAA) known to act on the enzyme glyceraldehyde-3-phosphate-dehydrogenase. Glycolytic flux was estimated by determining the concentration of extracellular lactate, the end product of RBC glycolysis. A low-cost colorimetric assay was implemented, that takes advantage of the straightforward quantification of the absorbance signal from the photographic image of the multi-well plate taken with a standard digital camera. Students estimate flux response coefficients for each inhibitor by fitting an empirical function to the experimental data, followed by analytical derivation of this function. IA and IAA exhibit qualitatively different patterns, which are thoroughly analyzed in terms of the physicochemical properties influencing their action on the target enzyme. IA causes highest glycolytic flux inhibition at lower concentration than IAA. This work illustrates the feasibility of using the MCA approach to study key variables of a simple metabolic system, in the context of an upper level biochemistry course. © 2018 International Union of Biochemistry and Molecular Biology, 46(5):502-515, 2018.


Assuntos
Bioquímica/educação , Eritrócitos/metabolismo , Glicólise , Colorimetria , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Eritrócitos/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Iodoacetamida/química , Iodoacetamida/farmacologia , Ácido Iodoacético/química , Ácido Iodoacético/farmacologia , Estudantes
7.
Biochim Biophys Acta Biomembr ; 1860(8): 1580-1588, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29859139

RESUMO

Aluminum (Al3+) is involved in the pathophysiology of neurodegenerative disorders. The mechanisms that have been proposed to explain the action of Al3+ toxicity are linked to changes in the cellular calcium homeostasis, placing the transporting calcium pumps as potential targets. The aim of this work was to study the molecular inhibitory mechanism of Al3+ on Ca2+-ATPases such as the plasma membrane and the sarcoplasmic reticulum calcium pumps (PMCA and SERCA, respectively). These P-ATPases transport Ca2+ actively from the cytoplasm towards the extracellular medium and to the sarcoplasmic reticulum, respectively. For this purpose, we performed enzymatic measurements of the effect of Al3+ on purified preparations of PMCA and SERCA. Our results show that Al3+ is an irreversible inhibitor of PMCA and a slowly-reversible inhibitor of SERCA. The binding of Al3+ is affected by Ca2+ in SERCA, though not in PMCA. Al3+ prevents the phosphorylation of SERCA and, conversely, the dephosphorylation of PMCA. The dephosphorylation time courses of the complex formed by PMCA and Al3+ (EPAl) in the presence of ADP or ATP show that EPAl is composed mainly by the conformer E2P. This work shows for the first time a distinct mechanism of Al3+ inhibition that involves different intermediates of the reaction cycle of these two Ca2+-ATPases.


Assuntos
Alumínio/química , Membrana Celular/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/química , Membrana Celular/química , Concentração de Íons de Hidrogênio , Cinética , Magnésio/química , Músculo Esquelético/enzimologia , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores
8.
Arch Toxicol ; 92(1): 273-288, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28721440

RESUMO

In the recent years, the toxicity of certain divalent cations has been associated with the alteration of intracellular Ca2+ homeostasis. Among other mechanisms, these cations may affect the functionality of certain Ca2+-binding proteins and/or Ca2+ pumps. The plasma membrane calcium pump (PMCA) maintains Ca2+ homeostasis in eukaryotic cells by mediating the efflux of this cation in a process coupled to ATP hydrolysis. The aim of this work was to investigate both in vitro and in cultured cells if other divalent cations (Sr2+, Ba2+, Co2+, Cd2+, Pb2+ or Be2+) could be transported by PMCA. Current results indicate that both purified and intact cell PMCA transported Sr2+ with kinetic parameters close to those of Ca2+ transport. The transport of Pb2+ and Co2+ by purified PMCA was, respectively, 50 and 75% lower than that of Ca2+, but only Co2+ was extruded by intact cells and to a very low extent. In contrast, purified PMCA-but not intact cell PMCA-transported Ba2+ at low rates and only when activated by limited proteolysis or by phosphatidylserine addition. Finally, purified PMCA did not transport Cd2+ or Be2+, although minor Be2+ transport was measured in intact cells. Moreover, Cd2+ impaired the transport of Ca2+ through various mechanisms, suggesting that PMCA may be a potential target of Cd2+-mediated toxicity. The differential capacity of PMCA to transport these divalent cations may have a key role in their detoxification, limiting their noxious effects on cell homeostasis.


Assuntos
Cátions/farmacocinética , Metais/farmacocinética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Transporte Biológico , Cálcio/farmacocinética , Calmodulina/química , Calmodulina/metabolismo , Cátions/toxicidade , Células Cultivadas , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Células HEK293 , Humanos , Inativação Metabólica , Metais/toxicidade , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Domínios Proteicos
9.
Biomacromolecules ; 16(9): 2904-10, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26241560

RESUMO

Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol.


Assuntos
Colesterol , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico , Bicamadas Lipídicas , Peptídeos , Fosfolipídeos , Células CACO-2 , Colesterol/química , Colesterol/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/farmacologia , Lipossomos , Peptídeos/química , Peptídeos/farmacologia , Fosfolipídeos/química , Fosfolipídeos/farmacologia
10.
J Biol Chem ; 290(10): 6179-90, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25605721

RESUMO

The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca(2+) pump (PMCA). We found that Ca(2+)-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca(2+)-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.


Assuntos
Membrana Celular/enzimologia , Bicamadas Lipídicas/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Conformação Proteica , Cristalografia por Raios X , Detergentes/química , Detergentes/metabolismo , Eritrócitos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Micelas , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
11.
Eur Neuropsychopharmacol ; 24(8): 1405-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24846538

RESUMO

Epilepsy is recognized as one of the most common and serious neurological disorder affecting 1-2% of the world׳s population. The present study demonstrates that systemic administration of 3-butyl-5,5-dimethyl-1,2,3-oxathiazolidine-4-one-2,2-dioxide (DIOXIDE), a synthetic compound bioisoster of trimethadione and phenytoin (classical anticonvulsants), elicits a dose dependent anticonvulsant response in mice submitted to the subcutaneous pentylenetetrazole seizure test (scPTZ). Among various factors supposed to play role in epilepsy, oxidative stress and reactive species have strongly emerged. The protection exerted by DIOXIDE over the extent of brain oxidative damage produced by PTZ was determined, by measuring the levels of lipid peroxidation and reduced glutathione and the activity of Na(+)/K(+)-ATPase. Psychiatric disorders represent frequent comorbidities in persons with epilepsy. In this report, the potential anxiolytic and antidepressant activities of DIOXIDE were evaluated in several widely used models for assessing anxiolytic and antidepressant activities in rodents. Although DIOXIDE did not evidence anxiolytic activity at the doses tested, it revealed a significant antidepressant-like effect. Preliminary studies of its mechanism of action, by means of its capacity to act via the GABAA receptor (using the [(3)H]flunitrazepam binding assay in vitro and the picrotoxin test in vivo) and the Na(+) channel (using the alkaloid veratrine, a voltage-Na(+) channel agonist) demonstrated that the anticonvulsant effect is not likely related to the GABAergic pathway and the antidepressant-like effect could be due to its Na(+) channel blocking properties. The results for DIOXIDE suggested it as a new anticonvulsant-antioxidant and antidepressant compound that deserves further development.


Assuntos
Anticonvulsivantes/uso terapêutico , Antidepressivos/uso terapêutico , Lesões Encefálicas/prevenção & controle , Fenitoína/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/patologia , Trimetadiona/uso terapêutico , Animais , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Flunitrazepam/farmacocinética , Glutationa/metabolismo , Elevação dos Membros Posteriores/psicologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Fenitoína/química , Convulsões/induzido quimicamente , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo , Trimetadiona/química , Veratrina/farmacologia
12.
J Biol Chem ; 288(43): 31030-41, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24025327

RESUMO

The aim of this work was to study the plasma membrane calcium pump (PMCA) reaction cycle by characterizing conformational changes associated with calcium, ATP, and vanadate binding to purified PMCA. This was accomplished by studying the exposure of PMCA to surrounding phospholipids by measuring the incorporation of the photoactivatable phosphatidylcholine analog 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine to the protein. ATP could bind to the different vanadate-bound states of the enzyme either in the presence or in the absence of Ca(2+) with high apparent affinity. Conformational movements of the ATP binding domain were determined using the fluorescent analog 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate. To assess the conformational behavior of the Ca(2+) binding domain, we also studied the occlusion of Ca(2+), both in the presence and in the absence of ATP and with or without vanadate. Results show the existence of occluded species in the presence of vanadate and/or ATP. This allowed the development of a model that describes the transport of Ca(2+) and its relation with ATP hydrolysis. This is the first approach that uses a conformational study to describe the PMCA P-type ATPase reaction cycle, adding important features to the classical E1-E2 model devised using kinetics methodology only.


Assuntos
Trifosfato de Adenosina/química , Membrana Eritrocítica/enzimologia , Modelos Químicos , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Trifosfato de Adenosina/metabolismo , Membrana Eritrocítica/química , Humanos , Transporte de Íons/fisiologia , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Estrutura Terciária de Proteína
13.
J Biol Chem ; 288(32): 23380-93, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23803603

RESUMO

As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca(2+) with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca(2+)-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca(2+)-ATPase activity was related to an increase in the apparent affinity for Ca(2+) and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca(2+) homeostasis.


Assuntos
Actinas/química , Cálcio/química , Membrana Eritrocítica/química , Homeostase/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Multimerização Proteica/fisiologia , Actinas/isolamento & purificação , Actinas/metabolismo , Animais , Cálcio/metabolismo , Membrana Eritrocítica/metabolismo , Humanos , Transporte de Íons/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Coelhos
14.
Cell Biochem Biophys ; 66(1): 187-98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23152090

RESUMO

We have previously shown that plasma membrane calcium ATPase (PMCA) pump activity is affected by the membrane protein concentration (Vanagas et al., Biochim Biophys Acta 1768:1641-1644, 2007). The results of this study provided evidence for the involvement of the actin cytoskeleton. In this study, we explored the relationship between the polymerization state of actin and its effects on purified PMCA activity. Our results show that PMCA associates with the actin cytoskeleton and this interaction causes a modulation of the catalytic activity involving the phosphorylated intermediate of the pump. The state of actin polymerization determines whether it acts as an activator or an inhibitor of the pump: G-actin and/or short oligomers activate the pump, while F-actin inhibits it. The effects of actin on PMCA are the consequence of direct interaction as demonstrated by immunoblotting and cosedimentation experiments. Taken together, these findings suggest that interactions with actin play a dynamic role in the regulation of PMCA-mediated Ca(2+) extrusion through the membrane. Our results provide further evidence of the activation-inhibition phenomenon as a property of many cytoskeleton-associated membrane proteins where the cytoskeleton is no longer restricted to a mechanical function but is dynamically involved in modulating the activity of integral proteins with which it interacts.


Assuntos
Actinas/química , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/química , Cálcio/química , Membrana Eritrocítica/enzimologia , Citoesqueleto de Actina , Actinas/classificação , Ativação Enzimática , Membrana Eritrocítica/química , Eritrócitos/química , Eritrócitos/enzimologia , Humanos , Proteínas de Membrana/química , Fosforilação , Polimerização , Conformação Proteica
15.
Biochem J ; 443(1): 125-31, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22214540

RESUMO

The autoinhibition/activation of the PMCA (plasma membrane Ca2+-ATPase) involves conformational changes in the membrane region of the protein that affect the amount of lipids directly associated with the transmembrane domain. The lipid-protein-dependence of PMCA isoforms 2 and 4 expressed and obtained in purified form from Saccharomyces cerevisiae was investigated using the phosphatidylcholine analogue [125I]TID-PC/16 {l-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromemyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine}, which was incorporated into mixtures of dimyristoylphosphatidylcholine and the non-ionic detergent C12E10 [deca(ethylene glycol) dodecyl ether]. We found no differences between the recombinant PMCA4 and PMCA purified from erythrocytes (ePMCA). However, titration of the half-maximal activation by Ca2+/calmodulin of PMCA2 showed 30-fold higher affinity than PMCA4. PMCA2 exhibited a lower level of labelling in the autoinhibited conformation relative to PMCA4, indicating that the lower autoinhibition was correlated with a lower exposure to lipids in the autoinhibited state. Analysis of the lipid-protein stoichiometry showed that the lipid annulus of PMCA varies: (i) in accordance to the conformational state of the enzyme; and (ii) depending on the different isoforms of PMCA. PMCA2 during Ca2+ transport changes its conformation to a lesser extent than PMCA4, an isoform more sensitive to modulation by calmodulin and acidic phospholipids. This is the first demonstration of a dynamic behaviour of annular lipids and PMCA.


Assuntos
Ativação Enzimática , Fosfolipídeos/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Animais , Calmodulina/química , Cromatografia de Afinidade , Eritrócitos/enzimologia , Humanos , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/isolamento & purificação , ATPases Transportadoras de Cálcio da Membrana Plasmática/biossíntese , ATPases Transportadoras de Cálcio da Membrana Plasmática/isolamento & purificação , Ligação Proteica , Conformação Proteica , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae , Coloração e Rotulagem , Titulometria
16.
Curr Chem Biol ; 5(2): 118-129, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21691422

RESUMO

Although membrane proteins constitute more than 20% of the total proteins, the structures of only a few are known in detail. An important group of integral membrane proteins are ion-transporting ATPases of the P-type family, which share the formation of an acid-stable phosphorylated intermediate as part of their reaction cycle. There are several crystal structures of the sarcoplasmic reticulum Ca(2+) pump (SERCA) revealing different conformations, and recently, crystal structures of the H(+)-ATPase and the Na(+)/K(+)-ATPase were reported as well. However, there are no atomic resolution structures for other P-type ATPases including the plasma membrane calcium pump (PMCA), which is integral to cellular Ca(2+) signaling. Crystallization of these proteins is challenging because there is often no natural source from which the protein can be obtained in large quantities, and the presence of multiple isoforms in the same tissue further complicates efforts to obtain homogeneous samples suitable for crystallization. Alternative techniques to study structural aspects and conformational transitions in the PMCAs (and other P-type ATPases) have therefore been developed. Specifically, information about the structure and assembly of the transmembrane domain of an integral membrane protein can be obtained from an analysis of the lipid-protein interactions. Here, we review recent efforts using different hydrophobic photo-labeling methods to study the non-covalent interactions between the PMCA and surrounding phospholipids under different experimental conditions, and discuss how the use of these lipid probes can reveal valuable information on the membrane organization and conformational state transitions in the PMCA, Na(+)/K(+)-ATPase, and other P-type ATPases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...